# PIONEER DAQ

Jack Carlton
University of Kentucky
June 19th, 2024

### Hardware vs. Software Side

- Usually "DAQ" refers to the "software side" (i.e. MIDAS and related tools)
  - Loosely used for hardware (electronics) side as well

 I like to differentiate between the software and hardware sides



Proposed Data Acquisition (DAQ) Framework



Software Side

# Proposed Data Acquisition (DAQ) Framework

arXiv:2203.05505



arXiv:2203.01981

## **Data Rates**

| triggers | prescale | $\frac{\text{range}}{\text{TR(ns)}}$ | rate<br>(kHz) | CALO           |      |      | ATAR digitizer |      |      | ATAR high thres |       |
|----------|----------|--------------------------------------|---------------|----------------|------|------|----------------|------|------|-----------------|-------|
|          |          |                                      |               | $\Delta T(ns)$ | chan | MB/s | $\Delta T(ns)$ | chan | MB/s | chan            | MB/s  |
| PI       | 1000     | -300,700                             | 0.3           | 200            | 1000 | 120  | 30             | 66   | 2.4  | 20              | 0.012 |
| CaloH    | 1        | -300,700                             | 0.1           | 200            | 1000 | 40   | 30             | 66   | 0.8  | 20              | 0.004 |
| TRACK    | 50       | -300,700                             | 3.4           | 200            | 1000 | 1360 | 30             | 66   | 27   | 20              | 0.014 |
| PROMPT   | 1        | 2,32                                 | 5             | 200            | 1000 | 2000 | 30             | 66   | 40   | 20              | 0.2   |

- PIONEER DAQ expects data rate of ~3.5GB/s
- This is ~100,000 TB/year
- How do we compress this in real time?
  - Fit data, store fit parameters
  - Compress and store residuals, throw some out
  - Graphics Processing Units (GPUs) used for this operation

# **Template Fitting**

- Can construct a continuous template for our traces T(t)
- Can fit traces using template:  $f(t) = A \cdot T(t t_0) + B$
- Storing unfit traces takes ~12 bits per ADC sample
- Storing residuals takes ~4 bits per ADC sample
- By fitting, we can compress the data by a factor of ~3



Time [c.t]

# Template Fitting

Data from PSI test beam

Each vertical slice corresponds to pdf  $p_i(x_i)$ 

Template fit drastically reduces spread of data



## Theoretical Best Compression

- For lossless compression, the best possible compression rate is the entropy rate
- Entropy rate of pedestal part of signal is 3.4 bits per ADC sample
  - A perfect fit would reduce signal to pedestal noise
- Best possible data storage rate
   3.5 GB/s → ~1 GB/s
  - Assumes similar noise to PSI test beam data
- Realistically the data storage rate depends how good our fit is
  - Assuming entropy rate of ~5 bits/sample  $3.5 \text{ GB/s} \rightarrow \sim 1.5 \text{ GB/s}$

#### **Entropy Rate Formula**

$$H(X_i) = \sum_{\text{traces}} p(X_i) \log_2 (p(X_i))$$

 $X_i \equiv \text{Random variable for } i^{\text{th}} \text{ ADC sample}$ 

# Entropy Rate of PSI Test Beam Data After Fitting



## Real Time Compression Algorithm

We choose to let the FE's GPU and CPU handle compression for flexibility



# GPU Benchmarking (Timings)

- Block Size:
  - A GPU parameter, number of threads per multiprocessor

Can compress 2<sup>26</sup> integers
 (32-bit) in roughly ⅓ of a second.
 → ~ 0.8 GB/s compression rate

Fit + Compression Time using A5000 in PCle4 (Batch Size = 1024)



#### PCIe DMA Data Transfer

- Testing using a PCIe development board
  - Tested on PCle2 x4

 Using Vivado IP blocks, we can create PCIe DMA design



**Nereid K7 PCI Express FPGA Development Board** 



Example block diagram (made in Vivado) for a PCIe FPGA

#### PCIe DMA Data Transfer

- Speeds here are limited by the board's transfer rate
  - Board can only handle5GT/s (PCIe gen 2)
  - Expect faster for other boards
- Transfer rate ~1GB/s in ballpark of PIONEER rate (3.5 GB/s)
- Better to transfer in large packets

#### Transfer Speed Vs. Transfer Size



## Software Development

- Developed modular software working around midas
  - Useful for Calo test beam DAQ
  - Detached from Calo test beam DAQ, can be used with PIONEER DAQ
- Examples:
  - Midas Event Unpacker
  - Midas Event Publisher
  - Generalized DQM
  - Computer System Monitor



**Generalized DQM Webpage** 

## Software Development Plan

- Continue writing modular software
  - Will make experiment DAQ code much more manageable in the future
- Write PCle readout libraries usable for PIONEER
- Write compression libraries usable for PIONEER
- Write midas frontend to read data out of FPGA over PCIe
  - Rate test, compression test



# **Auxiliary Slides**

#### **Data Set**

- PSI Test beam, Run 1887
- 70 MeV/c centered on LYSO crystal
   4.
- The data only includes lyso channels (no Nal for instance)
- More details on that run are in this elog (https://maxwell.npl.washington.edu/

elog/pienuxe/R23/124)



# LYSO traces

- Select only LYSO channels and traces with a signal
- No pedestal subtraction, fitting, etc. (yet)





## **Entropy and Lossless Compression**

- For lossless compression, the best possible compression rate is the entropy rate
- To first order, the entropy of an entire trace is:

$$H(X_1, ..., X_n) = -\sum_{\text{traces}} p(X_1, ..., X_n) \log_2(p(X_1, ..., X_n))$$

- ullet  $X_i$  is the random variable for the ADC value of the i<sup>th</sup> sample in the trace with n samples
- ullet If we assume  $X_i$  independent, then

$$H(X_1,...,X_n) = H(X_1) + ... + H(X_n)$$

ullet By transforming (  $X_i {
ightarrow}$  fit residuals),  $X_i$  becomes approximately independent

## **Higher Order Entropy Estimations**

- Assume we have N characters (traces) in our alphabet (data set)
- Zero order: each character in alphabet  $H = \log_2(N)$  is statistically independent
- First order: each character in alphabet is statistically independent, p<sub>i</sub> is the probability of that character to occur

$$H = -\sum_{i=1}^{N} p_i \log_2(p_i)$$

- **Second order:** P<sub>j|i</sub> is correlation between subsequent characters
- $H = -\sum_{i=1}^{N} p_i \sum_{j=1}^{N} P_{j|i} \log_2(P_{j|i})$

General Model (impractical): B<sub>n</sub> represents the first n characters

$$H = \lim_{n \to \infty} \left[ -\frac{1}{n} \sum p(B_n) \log_2(B_n) \right]$$

## Joint Entropy, Mutual Information

$$H(X_1,...,X_n) \le H(X_1) + ... + H(X_n)$$

Equality only holds if

 $X_1,...,X_n$  are mutually statistically independent

This means if

$$I(X_1, X_2) = H(X_1) + H(X_2) - H(X, Y) = 0$$

Then we must have  $X_1$  and  $X_2$  be statistically independent

## Joint entropy for Independent Variables Proof

#### **Statement:**

$$H(X_1,...,X_n) = \sum_{i=1}^n H(X_i)$$
**Proof (part 1):**

$$H(X_1,...,X_n) = -\sum_{x_1,...,x_n} P(x_1,...,x_n) \log_2(P(x_1,...,x_n))$$

$$= -\sum_{x_1,...,x_n} P(x_1)...P(x_n) (\log_2(P(x_1)) + ... + \log_2(P(x_n)))$$

(Note: I am lazy, each P(x<sub>i</sub>) represents a different pdf in general)

## Joint entropy for Independent Variables Proof

Proof (part 2): 
$$H(X_1, ..., X_n) = -\left(\sum_{x_1} P(x_1) \log_2(P(x_1))\right) \left(\sum_{x_2} P(x_2) \cdot ... \cdot \sum_{x_n} P(x_n)\right) \\ - ... \\ - \left(\sum_{x_1} P(x_1) \cdot ... \cdot \sum_{x_{n-1}} P(x_{n-1})\right) \left(\sum_{x_n} P(x_n) \log_2(P(x_n))\right) \\ \text{Note } \sum_{x_i} P(x_i) = 1 \text{ and } \sum_{x_1} P(x_i) \log_2(P(x_i)) = H(X_i) \\ = H(X_1) + ... + H(X_n) \blacksquare$$

# **Entropy** estimation

- Average entropy per bit: 5.22 bits / sample (compare to 16 bits for a short)
- Samples near waveform edge have lower entropy
- Samples near middle have higher entropy, due to the pulses
- Entropy is nonzero b/c the waveforms are **not** identical: difference pedestals, different pulse sizes

#### Entropy vs. sample number



# Pedestal subtracted





# **Entropy** estimation





- Entropy reduced for samples near waveform edge: ~3.4 bits
- Average entropy per sample now: 4.05 bits/sample

# Discrete Gaussian entropy



- If we assume gaussian noise: entropy of 3.4 bits ->  $\sigma = 2.6$
- If we look at samples < samples number 200 and fit ADC to gaussian:  $\sigma=2.4$

#### Constructing a template

- · Normalized all traces
- Time-align the peak
- · Smooth over adjacent sample
- Fit with  $f(t) = A \cdot T(t t_0) + C$

# -1640 - Raw -1660 -1680 -1700 -1720 -1740 -1760 -1780 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800

# Template fit



# Template fit



# **Entropy** estimation





- Baseline hasn't changed much. Makes sense since fluctuations remain
- Peak in middle is reduced, but evidently we can still do better
- Average entropy per sample now: 3.55 bits/sample

# Correlations





# **Mutual Information**

Templated-fitted

420



480

460

Sample #



H(X) + H(Y) - H(X,Y) nonzero means there are still correlations

# Template fitting going wrong

- What's causing the spread at the start of the pulse ~360 c.t. or so? (right plot)
- Seems like my template fit going wrong at the pulse turn-on







# Stray point due to pileup



## **Mutual Information**

- Mutual Information:  $I(X_1, X_2) = H(X_1) + H(X_2) H(X_1, X_2)$
- $I(X_1, X_2) = 0 \implies$  no correlation
- Template fitting reduces correlations between subsequent samples





# **Entropy Estimation**

Average entropy: 
$$H_{\text{avg}} = \frac{\sum_{i=1}^{N} H(X_i)}{N}$$

- In this case N = 800
- Before: H<sub>avg</sub> = 5.22 bits/sample
- After:  $H_{avg} = 3.55 \text{ bits/sample}$
- Some room for improvement(?)





## Explanation of Entropy Plot

- The pedestal is easy to fit, so the variance of the pedestal part of the signal is is just the noise of the WFD5s.
  - This is the minimum possible entropy when using this equipment
- The signal is harder to fit and therefore has more variance
  - Entropy of this part of the trace is therefore larger



# **Theoretical Best Compression Calculation**

Assuming data is sent as 12 bit ADC samples over PCle at a data rate of 3.5 GB/s:

Compression Ratio = 
$$\frac{\text{Entropy Rate}}{12}$$

Storage Data Rate = Compression Ratio  $\cdot$  3.5 GB/s

Entropy rate = 3.4 → New Data Rate ≈ 0.99 GB/s

Entropy rate =  $5 \rightarrow \text{New Data Rate } \approx 1.46 \text{ GB/s}$ 

# Signal Conditioning

- Want a narrow distribution for compression. Let r<sub>i</sub> be the numbers we compress
- Methods tried:
  - No conditioning
  - Delta encoding:

$$r_i = y_{i+1} - y_i$$

Twice Delta Encoding:

$$r_i = y_{i+2} - 2y_{i+1} + y_i$$

o Double Exponential Fit:

$$r_i = y_i - (A \cdot exp(at_i) + B \cdot exp(bt_i))$$

Shape Fit:

$$r_i = y_i - (A \cdot T(t_i - t_0) + B)$$



# Shape Fitting Algorithm

- 1. Construct a discrete template from sample pulses
- 2. Interpolate template to form a continuous Template, T(t)
- 3. "Stretch" and "shift" template to match signal:

$$X[i] = a(t_0)T(t[i] - t_0) + b(t_0)$$

[Note: a and b can be calculated explicitly given t<sub>o</sub>]

4. Compute  $\chi^2$  (assuming equal uncertainty on each channel i)

$$\chi^2 \propto \sum \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$$

5. Use Euler's method to minimize  $\chi^2$ 

## **Lossless Compression Algorithm**

#### Rice-Golomb Encoding

Let x be number to encode

$$y = "s" + "q" + "r"$$

- q = x/M (unary)
- r = x%M (binary)
- s = sign(x)
- Any distribution
- Close to optimal for valid choice of M
- One extra bit to encode negative sign
- Self-delimiting
- If quotient too large, we "give up" and write x in binary with a "give up" signal in front

#### Rice-Golomb Encoding (M=2)

| Value | Encoding |
|-------|----------|
| -1    | 011      |
| 0     | 000      |
| 1     | 001      |
| 2     | 1000     |

Red = sign bit
Blue = quotient bit(s) (Unary)
Yellow = remainder bit (binary)

## How to choose Rice-Golomb parameter M

 Generated fake Gaussian data (centered at zero) with variance σ<sup>2</sup>

For random variable X,
 M ≈ median(|X|)/2 is a good choice
 This is the close to the diagonal on the plot

 σ ≈ 32 for residuals of shape on wavedream data → M = 16 is a good choice



# Compression Ratio from Rice-Golomb Encoding

Lossless compression factor of ~2

 In agreement with plot from simulated data on last slide

 Data is much noisier than than PSI test beam, so we get a smaller compression factor



# Other Conditioning Distributions



# Shape Fitting Details

Fit Function

$$X[i] = aT(t[i] - t_0) + b$$

Explicit a(t<sub>o</sub>) calc

$$a(t_0) = \frac{\sum_{i=1}^{N} X[i] \sum_{i=1}^{N} T(t[i] - t_0)^2 - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} T(t[i] - t_0) X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit b(t<sub>0</sub>) calc

$$b(t_0) = \frac{N \sum_{i=1}^{N} T(t[i] - t_0) X[i] - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit  $\chi^2$  calc

$$f(t_0) \equiv \chi^2 \propto \sum_i \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$$

Newton's method

$$(t_0)_{n+1} = (t_0)_n - \frac{f'((t_0)_n)}{f''((t_0)_n)}$$

Threshold requirement  $|(t_0)_{n+1} - (t_0)_n| < \epsilon \equiv \text{"Threshold"}$ 

# Golomb Encoding

In general, M is an arbitrary choice

- Since computers work with binary,
   M = 2<sup>x</sup> such that x is an integer is a "fast" choice
  - This is called Rice-Golomb Encoding

 Self delimiting so long as the information M is provided

#### **Golomb Encoding Example**

Choose M = 10, b =  $log_2(M) = 3$ 2<sup>b+1</sup> - M = 16 - 10 = 6

 $r < 6 \rightarrow r$  encoded in b=3 bits

 $r \ge 6 \rightarrow r$  encoded in b+1=4 bits

| Encoding of quotient part |             |  |  |
|---------------------------|-------------|--|--|
| $\boldsymbol{q}$          | output bits |  |  |
| 0                         | 0           |  |  |
| 1                         | 10          |  |  |
| 2                         | 110         |  |  |
| 3                         | 1110        |  |  |
| 4                         | 11110       |  |  |
| 5                         | 111110      |  |  |
| 6                         | 1111110     |  |  |
| :                         | :           |  |  |
| N                         | 1111110     |  |  |

| Encoding of remainder part |        |        |             |  |  |
|----------------------------|--------|--------|-------------|--|--|
| r                          | offset | binary | output bits |  |  |
| 0                          | 0      | 0000   | 000         |  |  |
| 1                          | 1      | 0001   | 001         |  |  |
| 2                          | 2      | 0010   | 010         |  |  |
| 3                          | 3      | 0011   | 011         |  |  |
| 4                          | 4      | 0100   | 100         |  |  |
| 5                          | 5      | 0101   | 101         |  |  |
| 6                          | 12     | 1100   | 1100        |  |  |
| 7                          | 13     | 1101   | 1101        |  |  |
| 8                          | 14     | 1110   | 1110        |  |  |
| 9                          | 15     | 1111   | 1111        |  |  |

# Huffman Encoding

- Requires finite distribution
- Values treated as "symbols"
- Self-delimiting (sometimes called "greedy")



### **Huffman Encoding Example**

| Value  | Frequency | Encoding |  |  |
|--------|-----------|----------|--|--|
| -1 ≡ a | 1         | 000      |  |  |
| 0 ≡ b  | 10        | 1        |  |  |
| 1 ≡ c  | 5         | 01       |  |  |
| 2 ≡ d  | 3         | 001      |  |  |



# Theoretical Uncertainty in Compression Ratio from Gaussian Noise

• ~ 0.1% relative error



## Uniform Distribution of Noise effect on Compression Ratio

 Here instead we use a uniform distribution to generate the noise

 Not much different than gaussian noise, same conclusions really



# Residuals Distribution and Optimal M



| М   | Compression Ratio |  |  |  |
|-----|-------------------|--|--|--|
| 1   | 1.04721105        |  |  |  |
| 2   | 1.21287474        |  |  |  |
| 4   | 1.53114598        |  |  |  |
| 8   | 1.92616642        |  |  |  |
| 16  | 2.09307249        |  |  |  |
| 32  | 2.02975311        |  |  |  |
| 64  | 1.86037914        |  |  |  |
| 128 | 1.66627451        |  |  |  |
|     |                   |  |  |  |

# PCIe DMA Block Diagram in Vivado



Example block diagram (made in Vivado) for a PCle FPGA

PCIe Transfer Speeds for Different Generations

| VERSION | INTRODUCTION<br>YEAR | LINE CODE                       | TRANSFER  | THROUGHPUT |             |             |             |              |
|---------|----------------------|---------------------------------|-----------|------------|-------------|-------------|-------------|--------------|
| VERSION |                      |                                 | RATE      | x1         | x2          | х4          | ж8          | x16          |
| 1       | 2003                 | 8b/10b                          | 2.5 GT/s  | 0.250 GB/s | 0.500 GB/s  | 1.000 GB/s  | 2.000 GB/s  | 4.000 GB/s   |
| 2       | 2007                 | 8b/10b                          | 5.0 GT/s  | 0.500 GB/s | 1.000 GB/s  | 2.000 GB/s  | 4.000 GB/s  | 8.000 GB/s   |
| 3       | 2010                 | 128b/130b                       | 8.0 GT/s  | 0.985 GB/s | 1.969 GB/s  | 3.938 GB/s  | 7.877 GB/s  | 15.754 GB/s  |
| 4       | 2017                 | 128b/130b                       | 16.0 GT/s | 1.969 GB/s | 3.938 GB/s  | 7.877 GB/s  | 15.754 GB/s | 31.508 GB/s  |
| 5       | 2019                 | 128b/130b                       | 32.0 GT/s | 3.938 GB/s | 7.877 GB/s  | 15.754 GB/s | 31.508 GB/s | 63.015 GB/s  |
| 6.0     | 2021                 | 128b/130b<br>+ PAM -<br>4 + ECC | 64.0 GT/s | 7.877 GB/s | 15.754 GB/s | 31.508 GB/s | 63.015 GB/s | 126.031 GB/s |

**Nereid Test**